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Abstract—A concept for the optimization of nonlinear functions 

using particle swarm methodology is introduced. The evolution of 

several paradigms is outlined, and an implementation of one of the 

paradigms is discussed. Benchmark testing of the paradigm is described, 

and applications, including nonlinear function optimization and neural 

network training, are proposed. The relationships between particle 

swarm optimization and both artificial life and genetic algorithms are 

described,  
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I.  INTRODUCTION  

This paper introduces a method for optimization of continuous 
nonlinear functions. The method was discovered through simulation 
of a simplified social model; thus the social metaphor is discussed, 
though the algorithm stands without metaphorical support. This paper 
describes the particle swarm optimization concept in terms of its 
precursors, briefly reviewing the stages of its development from social 
simulation to optimizer. Discussed next are a few paradigms that 
implement the concept. Finally, the implementation of one paradigm 
is discussed in more detail, followed by results obtained from 
applications and tests upon which the paradigm has been shown to 
perform successfully. 

Particle swarm optimization has roots in two main component 
methodologies. Perhaps more obvious are its ties to artificial life (A-
life) in general, and to bird flocking, fish schooling, and swarming 
theory in particular. It is also related, however, to evolutionary 
computation, and has ties to both genetic algorithms and evolutionary 
programming. These relationships are briefly reviewed in the paper. 

Particle swarm optimization as developed by the authors 
comprises a very simple concept, and paradigms can be implemented 
in a few lines of computer code. It requires only primitive 
mathematical operators, and is computationally inexpensive in terms 
of both memory requirements and speed. Early testing has found the 
implementation to be effective with several kinds of problems. This 
paper discusses application of the algorithm to the training of artificial 
neural network weights, Particle swarm optimization has also been 
demonstrated to perform well on genetic algorithm test functions. This 
paper discusses the performance on Schaffer's f6 function, as 
described in Davis [l]. 

II. UNDERSTANDING SOCIAL BEHAVIOUR 

A number of scientists have created computer simulations of 
various interpretations of the movement of organisms in a bird flock 
or fish school. Notably, Reynolds [8] and Heppner and Grenander [4] 
presented simulations of bird flocking. Reynolds was intrigued by the 
aesthetics of bird flocking choreography, and Heppner, a zoologist, 
was interested in discovering the underlying rules that enabled large 
numbers of birds to flock synchronously, often changing direction 
suddenly, scattering and regrouping, etc. Both of these scientists had 
the insight that local process, such as those modeled by cellular 

automata, might underlie the unpredictable group dynamics of bird 
social behavior. Both models relied heavily on manipulation of inter-
individual distances; that is, the synchrony of flocking behavior was 
thought to be a function of birds’ efforts to maintain an optimum 
distance between themselves and their neighbors. 

It does not seem a too-large leap of logic to suppose that some 
same rules underlie animal social behavior, including herds, schools, 
and flocks, and that of humans. As sociobiologist E. O. Wilson [9] has 
written, in reference to fish schooling, “In theory at least, individual 
members of the school can profit from the discoveries and previous 
experience of all other members of the school during the search for 
food. This advantage can become decisive, outweighing the 
disadvantages of competition for food items, whenever the resource is 
unpedictably distributed in patches”. This statement suggests that 
social sharing of information among conspeciates offers an 
evolutionary advantage: this hypothesis was fundamental to the 
development of particle swarm optimization. 

 

Fig. 1. Variants of Particle Swarm Optimization 

 Particle swarm optimization is one of the rare biologically inspired 
algorithms, which was proposed by Kennedy and Eberhart in the year 
1995. The PSO algorithm was based on the behavior of birds and 
fishes. Lately, there have been many variants of the PSO technique as 
can be seen from figure 1. The basic variants of the PSO are velocity 
clamping, inertia weight, and construction coefficient, synchronous 
and asynchronous updates. Each of the variant of the PSO is proposed 
recently and hence, the shortfall caused by the previous PSO shall be 
covered in the most recent variant of the PSO. 
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 One motive for developing the simdation was to model 
human social behavior, which is of course not identical to fish 
schooling or bird flocking. One important difference is its 
abstractness. Birds and fish adjust their physical movement to avoid 
predators, seek food and mates, optimize environmental parameters 
such as temperature, etc. Humans; adjust not only physical movement 
but cognitive or experiential variables as well. We do not usually walk 
in step and turn in unison (though some fascinating research in human 
conformity shows that we are capable of it); rather, we tend to adjust 
our beliefs and attitudes to conform with those of our social peers. 

This is a major distinction in terms of contriving a computer 
simulation, for at least one obvious reason: collision. Two individuals 
can hold identical attitudes and beliefs without banging together, but 
two birds cannot occupy the same position in space without colliding. 
It seems reasonable, in discussing human social behavior, to map the 
concept of change into the bird/fish analog of movement. This is 
consistent with the classic Aristotelim view of qualitative and 
quantitative change as types of movement. Thus, besides moving 
through three-dimensional physical space, and avoiding collisions, 
humans change in abstract multidimensional space, collision-free. 
Physical space of course affects informational inputs, but it is arguably 
a trivial component of psychological experience. Humans learn to 
avoid physical collision by an early age, hit navigation of n-
dimensional psychosocial space requires decades of practice - and 
many of us never seem to acquire quite all the skills we need. 

III. ETIOLOGY OF PARTICLE SWARM OPTIMIZATION 

The particle swarm optimizer is probably best presented by 
explaining its conceptual development. As mentioned above, the 
algorithm began as a simulation of a simplified social milieu. Agents 
were thought of as collision-proof birds, and the original intent was to 
graphically simulate the graceful but unpredictable choreography of a 
bird flock. 

A. Nearest Neighbor Velocity Matching and Craziness 

A satisfying simulation was rather quickly written, which relied 

on two props: nearest-neighbor velocity matching and “craziness.” A 

population of birds was randomly initialized with a position for each 

on a torus pixel grid and with X and Y velocities. At each iteration a 

loop in the program determined, for each agent (a more appropriate 

term than bird), which other agent was its nearest neighbor, then 

assigned that agent’s X and Y velocities to the agent in focus. 

Essentially this simple rule created a synchrony of movement. 

Unfortunately, the flock quickly settled on ii lunanimous, 

unchanging direction. Therefore, a stochastic variable called 

craziness was introduced. At each iteration some change was added 

to randomly chosen X and Y velocities. This introduced enough 

variation into the system to give the simulation an interesting and 

“lifelike” appearance, though of course the variation was wholly 

artificial.  

B. The Cornfield Vector 

Heppner’s bird simulations had a feature which introduced a 

dynamic force into the simulation. His birds flocked around a “roost,” 

a position on the pixel screen that attracted them until they finally 

landed there. This eliminated the need for a variable like craziness, 

as the simulation took on a lie of its own. While the idea of a roost 

was intriguing, it led to another question which seemed even more 

stimulating. Heppner’s birds knew where their roost was, but in real 

life birds land on any tree or telephone wire that meets their 

immediate needs. Even more importantly, bird flocks land where 

there is food. How do they find food? Anyone who has ever put out 

a bird feeder knows that within hours a great number of birds will 

likely find it, even though they had no previous knowledge of its 

location, appearance, etc. It seems possible that something about the 

flock dynamic enables members of the flock to capitalize on one 

another’s knowledge, as in Wilson’s quote above. 

The second variation of the simulation defined a “comfield 

vector,” a two-dimensional vector of XY coordinates on the pixel 

plane. Each agent was programmed to evaluate its present position in 

terms of the equation: 

   
2 2

100 100Eval presentx presenty     

so that at the (100,100) position the value was zero. 

Each agent “remembered” the best value and the XY position 

which had resulted in that value. The value was called pbest[] and 

the positions pbestx[] and pbesty[] (brackets indicate that these are 

arrays, with number of elements = number of agents). As each agent 

moved through the pixel space evaluating positions, its X and Y 

velocities were adjusted in a simple manner. If it was to the right of 

its pbestx, then its X velocity (call it vx) was adjusted negatively by a 

random amount weighted by a parameter of the system: vx[]=vx[] - 

rand()*p-increment. If it was to the left of pbestx, rand()*p-

increment was added to vx[]. Similarly, Y velocities vy[] were 

adjusted up and down, depending on whether the agent was above or 

below pbesty. 

Secondly, each agent “knew” the globally best position that one 

member of the flock had found, and its value. This was accomplished 

by simply assigning the array index of the agent with the best value 

to a variable called gbest, so that pbestx[gbest] was the group’s best 

X position, and pbesty[gbest] its best Y position, and this information 

was available to all flock members. Again, each member’s vx[] and 

vy[] were adjusted as follows, where g-increment is a system 

parameter. 

ifpresentx[] > pbestx[gbest] then vx[] = vx[] - rand() *g-

increment 

ifpresentx[] < pbestx[gbest] then vx[] = vx[] + rand() *g-

increment 

ifpresenty[] > pbesty[gbestl then vy[] = vy[] - rand() *g-

increment 

ifpresenty[l< pbesty[gbestl then vy[] = vy[] + rand() *g-

increment 

In the simulation, a circle marked the (100,100) position on the 

pixel field, and agents were represented as colored points. Thus an 

observer could watch the flocking agents circle around until they 

found the simulated cornfield. The results were surprising. With p-

increment and g-increment set relatively high, the flock seemed to be 

sucked violently into the cornfield. In a very few iterations the entire 

flock, usually 15 to 30 individuals, was seen to be clustered within 

the tiny circle surrounding the goal. With p-increment and g-

increment set low, the flock swirled around the goal, realistically 

approaching it, swinging out rhythmically with subgroups 

synchronized, and finally “landing” on the target. 

C. Eliminating Ancillary Variables 

Once it was clear that the paradigm could optimize simple, two-

dimensional, linear functions, it was important to identify the parts of 

the paradigm that are necessary for the task. For instance, the authors 

quickly found that the algorithm works just as well, and looks just as 

realistic, without craziness, so it was removed. Next it was shown 

that optimization actually occurs slightly faster when nearest 

neighbor velocity matching is removed, though the visual effect is 

changed. The flock is now a swam, but it is well able to find the 

cornfield. 

The variables pbest and gbest and their increments are both 

necessary. Conceptually pbest resembles autobiographical memory, 

as each individual remembers its own experience (though only one 

fact about it), and the velocity adjustment associated with pbest has 

been called “simple nostalgia” in that the individual tends to return 

to the place that most satisfied it in the past. On the other hand, gbest 

is conceptually similar to publicized knowledge, or a group norm or 

standard, which individuals seek to attain. In the simulations, a high 

value of p_increment relative to g_increment results in excessive 

wandering of isolated individuals through the problem space, while 

the reverse (relatively high g_increment) results in the flock rushing 

prematurely toward local minima. Approximately equal values of the 
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two increments seem to result in the most effective search of the 

problem domain. 

D. Multidimensional Search 

While the algorithm seems to impressively model a flock 

searching for a cornfield, most interesting optimization problems are 

neither linear nor two-dimensional. Since one of the authors’ 

objectives is to model social behavior, which is multidimensional and 

collision-free, it seemed a simple step to change presentx and 

presenty (and of course vx[] and vy[n from one dimensional arrays 

to D x N matrices, where D is any number of dimensions and N is the 

number of agents. 

Multidimensional experiments were performed, using a 

nonlinear, multidimensional problem: adjusting weights to train a 

feed forward multilayer perceptron neural network (NN). One of the 

authors’ first experiments involved training weights for a three-layer 

NN solving the exclusive-or (XOR) problem. This problem requires 

two inputs and one output processing elements (PES), plus some 

number of hidden PES. Besides connections from the piwious layer, 

the hidden and output PE layers each has a bias PE associated with 

it. Thus a 2,3,1 NN requires optimization of 13 parameters. This 

problem was approached by flying the agents through 13-

dimensional space until an average sum-squared error per PE 

criterion was met. The algorithm performed very well on this 

problem. The thirteen dimensional XOR network was trained, to am 

e < 0.05 criterion, in an average of 30.7 iterations with 20 agents. 

More complex NN architectures look longer of course. 

IV. SWARMS AND PARTICLES 

As was described in Section III, it became obvious during the 

simplification of the paradigm that the behavior of the population of 

agents is now more like a swarm than a flock. The term swarm has a 

basis in the literature. In particular, the authors use the term in 

accordance with a paper by Millonas [6], who developed his models 

for applications in artificial life, and articulated five basic principles 

of swarm intelligence. First is the proximity principle: the population 

should be able to carry out simple space and time computations. 

Second is the quality principle: the population should be able to 

respond to quality factors in the environment. Third is the principle 

of diverse response: the population should not commit its activities 

along excessively narrow channels. Fourth is the principle of 

stability: the population should not change its mode of behavior every 

time the environment changes. Fifth is the principle of adaptability: 

the population must be able to change behavior mode when it’s worth 

the computational price. Note that principles four and five are the 

opposite sides of the same coin. 

The particle swarm optimization concept and paradigm 

presented in this paper seem to adhere to all five principles. Basic to 

the paradigm are n-dimensional space calculations carried out over a 

series of time steps. The population is responding to the quality 

factors pbest and gbest. The allocation of responses between pbest 

and gbest ensures ia diversity of response. The population changes 

its state (mode of behavior) only when gbest changes, thus adhering 

to the principle of stability. The population is adaptive because it does 

change when gbest changes. 

The term particle was selected as a compromise. While it could 

be argued that the population members are mass-less and volume-

less, anid thus could be called “points,” it is felt that velocities and 

accelerations are more appropriately applied to particles, even if each 

is defined to have arbitrarily small mass and volume. Further, Reeves 

[7] discusses particle systems consisting of clouds of primitive 

particles as models of diffuse objects such as clouds, fire and smoke. 

Thus the label the authors have chosen to represent the optimization 

concept is particle swarm.  

 

V. TESTS AND EARLY APPLICATIONS OF THE OPTIMIZER 

The paradigm has been tested using systematic benchmark tests 

as well as observing its performance on applications that are known 

to be difficult. The neural-net application described in Section III, for 

instance, showed that the particle swarm optimizer could train NN 

weights as effectively as the usual error back propagation method. 

The particle swarm optimizer has also been used to train a neural 

network to classify the Fisher Iris Data Set [3]. Again, the optimizer 

trained the weights as effectively as the back propagation method. 

Over a series of ten training sessions, the particle swarm optimizer 

paradigm required an average of 284 epochs. 

Intriguing informal indications are that the trained weights found 

by particle swarms sometimes generalize from a training set to a test 

set better than solutions found by gradient descent. For example, on 

a data set representing electroencephalogram spike waveforms and 

false positives, a back propagation NN achieved 89 percent correct 

on the test data [2]. The particle swarm optimizer was able to train 

the network so as to achieve 92 percent correct. 

The particle swarm optimizer was compared to a benchmark for 

genetic algorithms in Davis [1]: the extremely nonlinear Schaffer f6 

function. This function is very difficult to optimize, as the highly 

discontinuous data surface features many 1ocal optima. The particle 

swarm paradigm found the global optimum each run, and appears to 

approximate the results reported for elementary genetic algorithms in 

Chapter 2 of [1] in terms of the number of evaluations required to 

reach certain performance levels. 

 

VI. CONCLUSIONS 

Particle swarm optimization is an extremely wimple algorithm 

that seems to be effective for optimizing a wide range of functions. 

We view it as a ]mid-level form of A-life or biologically derived 

algorithm, occupying the space in nature between evolutionary 

search, which requires eons, and neural processing, which occurs on 

the order of milliseconds. Social optimization occurs in the time 

frame of ordinary experience - in fact, it is ordinary experience. In 

addition to its ties with A-life, particle swarm optimization has 

obvious ties with evolutionary computation. Conceptually, it seems 

to lie somewhere between genetic algorithms and evolutionary 

programming. It is highly dependent on stochastic processes, like 

evolutionary programming. The adjustment toward pbest and gbest 

by the particle swarm optimizer is conceptually similar to the 

crossover operation utilized by genetic algorithms. It uses the 

concept of fitness as do all evolutionary computation paradigms. 

Unique to the concept of particle swarm optimization is flying 

potential solutions through hyperspace, accelerating toward “better” 

solutions. Other evolutionary computation schemes operate directly 

on potential solutions which are represented as locations in 

hyperspace. Much of the success of particle swarms seems to lie in 

the agents’ tendency to hurtle past their target. Holland’s chapter on 

the “optimum allocation of trials” [5] reveals the delicate balance 

between conservative testing of known regions versus risky 

exploration of the unknown. It appears that the current version of the 

paradigm allocates trials nearly optimally. The stochastic factors 

allow thorough search of spaces between regions that have been 

found to be relatively good, and the momentum effect caused by 

modifying the extant velocities rather than replacing them results in 

overshooting, or exploration of unknown regions of the problem 

domain. 
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