
www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1872393 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1446

A Study and a Review on Particle Swarm Optimization

M.M.Janolkar

First Year Engineering Department

Prof Ram Meghe College of Engineering & Management

Amravati-India

K.A.Joshi
Electrical Engineering Department

Prof Ram Meghe College of Engineering & Management

Amravati-India

K.L.Bondar
P.G. Department of Mathematics

N.E.S. Science College

Nanded-India

Abstract—A concept for the optimization of nonlinear functions

using particle swarm methodology is introduced. The evolution of

several paradigms is outlined, and an implementation of one of the

paradigms is discussed. Benchmark testing of the paradigm is described,

and applications, including nonlinear function optimization and neural

network training, are proposed. The relationships between particle

swarm optimization and both artificial life and genetic algorithms are

described,

Keywords—particle swarm, optimization techniques, nearest

neighbors

I. INTRODUCTION

This paper introduces a method for optimization of continuous
nonlinear functions. The method was discovered through simulation
of a simplified social model; thus the social metaphor is discussed,
though the algorithm stands without metaphorical support. This paper
describes the particle swarm optimization concept in terms of its
precursors, briefly reviewing the stages of its development from social
simulation to optimizer. Discussed next are a few paradigms that
implement the concept. Finally, the implementation of one paradigm
is discussed in more detail, followed by results obtained from
applications and tests upon which the paradigm has been shown to
perform successfully.

Particle swarm optimization has roots in two main component
methodologies. Perhaps more obvious are its ties to artificial life (A-
life) in general, and to bird flocking, fish schooling, and swarming
theory in particular. It is also related, however, to evolutionary
computation, and has ties to both genetic algorithms and evolutionary
programming. These relationships are briefly reviewed in the paper.

Particle swarm optimization as developed by the authors
comprises a very simple concept, and paradigms can be implemented
in a few lines of computer code. It requires only primitive
mathematical operators, and is computationally inexpensive in terms
of both memory requirements and speed. Early testing has found the
implementation to be effective with several kinds of problems. This
paper discusses application of the algorithm to the training of artificial
neural network weights, Particle swarm optimization has also been
demonstrated to perform well on genetic algorithm test functions. This
paper discusses the performance on Schaffer's f6 function, as
described in Davis [l].

II. UNDERSTANDING SOCIAL BEHAVIOUR

A number of scientists have created computer simulations of
various interpretations of the movement of organisms in a bird flock
or fish school. Notably, Reynolds [8] and Heppner and Grenander [4]
presented simulations of bird flocking. Reynolds was intrigued by the
aesthetics of bird flocking choreography, and Heppner, a zoologist,
was interested in discovering the underlying rules that enabled large
numbers of birds to flock synchronously, often changing direction
suddenly, scattering and regrouping, etc. Both of these scientists had
the insight that local process, such as those modeled by cellular

automata, might underlie the unpredictable group dynamics of bird
social behavior. Both models relied heavily on manipulation of inter-
individual distances; that is, the synchrony of flocking behavior was
thought to be a function of birds’ efforts to maintain an optimum
distance between themselves and their neighbors.

It does not seem a too-large leap of logic to suppose that some
same rules underlie animal social behavior, including herds, schools,
and flocks, and that of humans. As sociobiologist E. O. Wilson [9] has
written, in reference to fish schooling, “In theory at least, individual
members of the school can profit from the discoveries and previous
experience of all other members of the school during the search for
food. This advantage can become decisive, outweighing the
disadvantages of competition for food items, whenever the resource is
unpedictably distributed in patches”. This statement suggests that
social sharing of information among conspeciates offers an
evolutionary advantage: this hypothesis was fundamental to the
development of particle swarm optimization.

Fig. 1. Variants of Particle Swarm Optimization

 Particle swarm optimization is one of the rare biologically inspired
algorithms, which was proposed by Kennedy and Eberhart in the year
1995. The PSO algorithm was based on the behavior of birds and
fishes. Lately, there have been many variants of the PSO technique as
can be seen from figure 1. The basic variants of the PSO are velocity
clamping, inertia weight, and construction coefficient, synchronous
and asynchronous updates. Each of the variant of the PSO is proposed
recently and hence, the shortfall caused by the previous PSO shall be
covered in the most recent variant of the PSO.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1872393 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1447

 One motive for developing the simdation was to model
human social behavior, which is of course not identical to fish
schooling or bird flocking. One important difference is its
abstractness. Birds and fish adjust their physical movement to avoid
predators, seek food and mates, optimize environmental parameters
such as temperature, etc. Humans; adjust not only physical movement
but cognitive or experiential variables as well. We do not usually walk
in step and turn in unison (though some fascinating research in human
conformity shows that we are capable of it); rather, we tend to adjust
our beliefs and attitudes to conform with those of our social peers.

This is a major distinction in terms of contriving a computer
simulation, for at least one obvious reason: collision. Two individuals
can hold identical attitudes and beliefs without banging together, but
two birds cannot occupy the same position in space without colliding.
It seems reasonable, in discussing human social behavior, to map the
concept of change into the bird/fish analog of movement. This is
consistent with the classic Aristotelim view of qualitative and
quantitative change as types of movement. Thus, besides moving
through three-dimensional physical space, and avoiding collisions,
humans change in abstract multidimensional space, collision-free.
Physical space of course affects informational inputs, but it is arguably
a trivial component of psychological experience. Humans learn to
avoid physical collision by an early age, hit navigation of n-
dimensional psychosocial space requires decades of practice - and
many of us never seem to acquire quite all the skills we need.

III. ETIOLOGY OF PARTICLE SWARM OPTIMIZATION

The particle swarm optimizer is probably best presented by
explaining its conceptual development. As mentioned above, the
algorithm began as a simulation of a simplified social milieu. Agents
were thought of as collision-proof birds, and the original intent was to
graphically simulate the graceful but unpredictable choreography of a
bird flock.

A. Nearest Neighbor Velocity Matching and Craziness

A satisfying simulation was rather quickly written, which relied

on two props: nearest-neighbor velocity matching and “craziness.” A

population of birds was randomly initialized with a position for each

on a torus pixel grid and with X and Y velocities. At each iteration a

loop in the program determined, for each agent (a more appropriate

term than bird), which other agent was its nearest neighbor, then

assigned that agent’s X and Y velocities to the agent in focus.

Essentially this simple rule created a synchrony of movement.

Unfortunately, the flock quickly settled on ii lunanimous,

unchanging direction. Therefore, a stochastic variable called

craziness was introduced. At each iteration some change was added

to randomly chosen X and Y velocities. This introduced enough

variation into the system to give the simulation an interesting and

“lifelike” appearance, though of course the variation was wholly

artificial.

B. The Cornfield Vector

Heppner’s bird simulations had a feature which introduced a

dynamic force into the simulation. His birds flocked around a “roost,”

a position on the pixel screen that attracted them until they finally

landed there. This eliminated the need for a variable like craziness,

as the simulation took on a lie of its own. While the idea of a roost

was intriguing, it led to another question which seemed even more

stimulating. Heppner’s birds knew where their roost was, but in real

life birds land on any tree or telephone wire that meets their

immediate needs. Even more importantly, bird flocks land where

there is food. How do they find food? Anyone who has ever put out

a bird feeder knows that within hours a great number of birds will

likely find it, even though they had no previous knowledge of its

location, appearance, etc. It seems possible that something about the

flock dynamic enables members of the flock to capitalize on one

another’s knowledge, as in Wilson’s quote above.

The second variation of the simulation defined a “comfield

vector,” a two-dimensional vector of XY coordinates on the pixel

plane. Each agent was programmed to evaluate its present position in

terms of the equation:

   
2 2

100 100Eval presentx presenty   

so that at the (100,100) position the value was zero.

Each agent “remembered” the best value and the XY position

which had resulted in that value. The value was called pbest[] and

the positions pbestx[] and pbesty[] (brackets indicate that these are

arrays, with number of elements = number of agents). As each agent

moved through the pixel space evaluating positions, its X and Y

velocities were adjusted in a simple manner. If it was to the right of

its pbestx, then its X velocity (call it vx) was adjusted negatively by a

random amount weighted by a parameter of the system: vx[]=vx[] -

rand()*p-increment. If it was to the left of pbestx, rand()*p-

increment was added to vx[]. Similarly, Y velocities vy[] were

adjusted up and down, depending on whether the agent was above or

below pbesty.

Secondly, each agent “knew” the globally best position that one

member of the flock had found, and its value. This was accomplished

by simply assigning the array index of the agent with the best value

to a variable called gbest, so that pbestx[gbest] was the group’s best

X position, and pbesty[gbest] its best Y position, and this information

was available to all flock members. Again, each member’s vx[] and

vy[] were adjusted as follows, where g-increment is a system

parameter.

ifpresentx[] > pbestx[gbest] then vx[] = vx[] - rand() *g-

increment

ifpresentx[] < pbestx[gbest] then vx[] = vx[] + rand() *g-

increment

ifpresenty[] > pbesty[gbestl then vy[] = vy[] - rand() *g-

increment

ifpresenty[l< pbesty[gbestl then vy[] = vy[] + rand() *g-

increment

In the simulation, a circle marked the (100,100) position on the

pixel field, and agents were represented as colored points. Thus an

observer could watch the flocking agents circle around until they

found the simulated cornfield. The results were surprising. With p-

increment and g-increment set relatively high, the flock seemed to be

sucked violently into the cornfield. In a very few iterations the entire

flock, usually 15 to 30 individuals, was seen to be clustered within

the tiny circle surrounding the goal. With p-increment and g-

increment set low, the flock swirled around the goal, realistically

approaching it, swinging out rhythmically with subgroups

synchronized, and finally “landing” on the target.

C. Eliminating Ancillary Variables

Once it was clear that the paradigm could optimize simple, two-

dimensional, linear functions, it was important to identify the parts of

the paradigm that are necessary for the task. For instance, the authors

quickly found that the algorithm works just as well, and looks just as

realistic, without craziness, so it was removed. Next it was shown

that optimization actually occurs slightly faster when nearest

neighbor velocity matching is removed, though the visual effect is

changed. The flock is now a swam, but it is well able to find the

cornfield.

The variables pbest and gbest and their increments are both

necessary. Conceptually pbest resembles autobiographical memory,

as each individual remembers its own experience (though only one

fact about it), and the velocity adjustment associated with pbest has

been called “simple nostalgia” in that the individual tends to return

to the place that most satisfied it in the past. On the other hand, gbest

is conceptually similar to publicized knowledge, or a group norm or

standard, which individuals seek to attain. In the simulations, a high

value of p_increment relative to g_increment results in excessive

wandering of isolated individuals through the problem space, while

the reverse (relatively high g_increment) results in the flock rushing

prematurely toward local minima. Approximately equal values of the

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1872393 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1448

two increments seem to result in the most effective search of the

problem domain.

D. Multidimensional Search

While the algorithm seems to impressively model a flock

searching for a cornfield, most interesting optimization problems are

neither linear nor two-dimensional. Since one of the authors’

objectives is to model social behavior, which is multidimensional and

collision-free, it seemed a simple step to change presentx and

presenty (and of course vx[] and vy[n from one dimensional arrays

to D x N matrices, where D is any number of dimensions and N is the

number of agents.

Multidimensional experiments were performed, using a

nonlinear, multidimensional problem: adjusting weights to train a

feed forward multilayer perceptron neural network (NN). One of the

authors’ first experiments involved training weights for a three-layer

NN solving the exclusive-or (XOR) problem. This problem requires

two inputs and one output processing elements (PES), plus some

number of hidden PES. Besides connections from the piwious layer,

the hidden and output PE layers each has a bias PE associated with

it. Thus a 2,3,1 NN requires optimization of 13 parameters. This

problem was approached by flying the agents through 13-

dimensional space until an average sum-squared error per PE

criterion was met. The algorithm performed very well on this

problem. The thirteen dimensional XOR network was trained, to am

e < 0.05 criterion, in an average of 30.7 iterations with 20 agents.

More complex NN architectures look longer of course.

IV. SWARMS AND PARTICLES

As was described in Section III, it became obvious during the

simplification of the paradigm that the behavior of the population of

agents is now more like a swarm than a flock. The term swarm has a

basis in the literature. In particular, the authors use the term in

accordance with a paper by Millonas [6], who developed his models

for applications in artificial life, and articulated five basic principles

of swarm intelligence. First is the proximity principle: the population

should be able to carry out simple space and time computations.

Second is the quality principle: the population should be able to

respond to quality factors in the environment. Third is the principle

of diverse response: the population should not commit its activities

along excessively narrow channels. Fourth is the principle of

stability: the population should not change its mode of behavior every

time the environment changes. Fifth is the principle of adaptability:

the population must be able to change behavior mode when it’s worth

the computational price. Note that principles four and five are the

opposite sides of the same coin.

The particle swarm optimization concept and paradigm

presented in this paper seem to adhere to all five principles. Basic to

the paradigm are n-dimensional space calculations carried out over a

series of time steps. The population is responding to the quality

factors pbest and gbest. The allocation of responses between pbest

and gbest ensures ia diversity of response. The population changes

its state (mode of behavior) only when gbest changes, thus adhering

to the principle of stability. The population is adaptive because it does

change when gbest changes.

The term particle was selected as a compromise. While it could

be argued that the population members are mass-less and volume-

less, anid thus could be called “points,” it is felt that velocities and

accelerations are more appropriately applied to particles, even if each

is defined to have arbitrarily small mass and volume. Further, Reeves

[7] discusses particle systems consisting of clouds of primitive

particles as models of diffuse objects such as clouds, fire and smoke.

Thus the label the authors have chosen to represent the optimization

concept is particle swarm.

V. TESTS AND EARLY APPLICATIONS OF THE OPTIMIZER

The paradigm has been tested using systematic benchmark tests

as well as observing its performance on applications that are known

to be difficult. The neural-net application described in Section III, for

instance, showed that the particle swarm optimizer could train NN

weights as effectively as the usual error back propagation method.

The particle swarm optimizer has also been used to train a neural

network to classify the Fisher Iris Data Set [3]. Again, the optimizer

trained the weights as effectively as the back propagation method.

Over a series of ten training sessions, the particle swarm optimizer

paradigm required an average of 284 epochs.

Intriguing informal indications are that the trained weights found

by particle swarms sometimes generalize from a training set to a test

set better than solutions found by gradient descent. For example, on

a data set representing electroencephalogram spike waveforms and

false positives, a back propagation NN achieved 89 percent correct

on the test data [2]. The particle swarm optimizer was able to train

the network so as to achieve 92 percent correct.

The particle swarm optimizer was compared to a benchmark for

genetic algorithms in Davis [1]: the extremely nonlinear Schaffer f6

function. This function is very difficult to optimize, as the highly

discontinuous data surface features many 1ocal optima. The particle

swarm paradigm found the global optimum each run, and appears to

approximate the results reported for elementary genetic algorithms in

Chapter 2 of [1] in terms of the number of evaluations required to

reach certain performance levels.

VI. CONCLUSIONS

Particle swarm optimization is an extremely wimple algorithm

that seems to be effective for optimizing a wide range of functions.

We view it as a]mid-level form of A-life or biologically derived

algorithm, occupying the space in nature between evolutionary

search, which requires eons, and neural processing, which occurs on

the order of milliseconds. Social optimization occurs in the time

frame of ordinary experience - in fact, it is ordinary experience. In

addition to its ties with A-life, particle swarm optimization has

obvious ties with evolutionary computation. Conceptually, it seems

to lie somewhere between genetic algorithms and evolutionary

programming. It is highly dependent on stochastic processes, like

evolutionary programming. The adjustment toward pbest and gbest

by the particle swarm optimizer is conceptually similar to the

crossover operation utilized by genetic algorithms. It uses the

concept of fitness as do all evolutionary computation paradigms.

Unique to the concept of particle swarm optimization is flying

potential solutions through hyperspace, accelerating toward “better”

solutions. Other evolutionary computation schemes operate directly

on potential solutions which are represented as locations in

hyperspace. Much of the success of particle swarms seems to lie in

the agents’ tendency to hurtle past their target. Holland’s chapter on

the “optimum allocation of trials” [5] reveals the delicate balance

between conservative testing of known regions versus risky

exploration of the unknown. It appears that the current version of the

paradigm allocates trials nearly optimally. The stochastic factors

allow thorough search of spaces between regions that have been

found to be relatively good, and the momentum effect caused by

modifying the extant velocities rather than replacing them results in

overshooting, or exploration of unknown regions of the problem

domain.

REFERENCES

[1] Davis, L., Ed. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold,

New York, NY.

[2] Eberhart, R. C. and R. W Dobbins (1990). Neural Network PC Tools: A Practical
Guide. Academic Press, San Diego, CA

[3] Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7: 179-188.

[4] Heppner, F. and U. Grenander (1990). A stochastic nonlinear model for
coordinated bird flocks. In S . Krasner, Ed., The Ubiquity of Chaos. AAAS
Publications, Washington, DC

[5] Holland, J. H. (1992). Adaptation in Natural and Artijlcial Systems. MIT Press,
Cambridge, MA.

http://www.ijcrt.org/

www.ijcrt.org © 2018 IJCRT | Volume 6, Issue 1 March 2018 | ISSN: 2320-2882

IJCRT1872393 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1449

[6] Millonas, M. M. (1994). Swarms, phase transitions, and collective intelligence.
In C. G. Langton, Ed., Artijicial Life III. Addison Wesley, Reading, MA.

[7] Reeves, W. T. (1983). Particle systems - a technique for modeling a class of fuzzy
objects. ACM Transactions on Graphics, 2(2):91-108.

[8] Reynolds, C. W. (1987). Flocks, herds and schools: a distributed behavioral
model. Computer Graphics, 2 1 (4):25-34.

[9] Wilson, E.O. (1975). Sociobiology: The new synthesis. Belknap Press,
Cambridge, MA.

http://www.ijcrt.org/

